

SHRIMATI INDIRA GANDHI COLLEGE
(Nationally Accredited with ‘A’ Grade(3rd Cycle) by NAAC)

An ISO 9001:2015 Certified Institution

Tiruchirappalli – 620 002

DEPARTMENTS OF COMPUTER SCIENCE, IT &

APPLICATIONS

 WEB TECHNOLOGIES - STUDY MATERIAL (UNIT –II)

M.Sc COMPUTER SCIENCE (2021-2022)

 AUTHOR:

 Dr.M.GOMATHY

 Asst. Professor

 Department of Computer Science

 Shrimati Indira Gandhi College

 Trichirappalli-02

 UNIT –II –JAVA SCRIPT

Client Side Programming : JavaScript

 JavaScript was designed to add interactivity to HTML pages

 JavaScript is a scripting language

 A scripting language is a lightweight programming language

 JavaScript is usually embedded directly into HTML pages

 JavaScript is an interpreted language (means that scripts execute without preliminary

compilation)

What can a JavaScript do?

 JavaScript can put dynamic text into an HTML page
 JavaScript can react to events - A JavaScript can be set to execute when something

happens, like when a page has finished loading or when a user clicks on an HTML

element

 JavaScript can read and write HTML elements - A JavaScript can read and change the

content of an HTML element

 JavaScript can be used to validate data - A JavaScript can be used to validate form

data before it is submitted to a server. This saves the server from extra processing

 JavaScript can be used to create cookies - A JavaScript can be used to store and

retrieve information on the visitor's computer

The Real Name is ECMAScript. JavaScript is an implementation of the ECMAScript language

standard.ECMAScript is developed and maintained by the ECMA organization. ECMA-262 is

the official JavaScript standard. The language was invented by Brendan Eich at Netscape (with

Navigator 2.0), and has appeared in all Netscape and Microsoft browsers since 1996. The

development of ECMA-262 started in 1996, and the first edition of was adopted by the ECMA

General Assembly in June 1997. The standard was approved as an international ISO (ISO/IEC

16262) standard in 1998. The development of the standard is still in progress.

Structure of Java Script

<html>

<head>

<script type="text/javascript">

 document.writeln(“Helo World!);

</script>

</head>

<body>

</body>

</html>

To insert a JavaScript into an HTML page, we use the <script> tag. Inside the <script> tag we

use the type attribute to define the scripting language.

So, the <script type="text/javascript"> and </script> tells where the JavaScript starts and ends. It

is possible to have script code inside the body tag also as shown below. If it is placed inside the

body tag, the script will be executed when the content of HTML document is displayed.

<html>

<body>

<script type="text/javascript">

............

</script>

</body>

</html>

The document.write command is a standard JavaScript command for writing output to a page.

By entering the document.write command between the <script> and </script> tags, the browser

will recognize it as a JavaScript command and execute the code line. In this case the browser will

write Hello World! to the page:

Scripts in <head>

Scripts to be executed when they are called, or when an event is triggered, are placed in

functions. It is a good practice to put all your functions in the head section, this way they are all

in one place and do not interfere with page content.

Example

<html>

<head>

<script type="text/javascript">

function message()

{

alert("This alert box was called with the onload event");

}

</script>

</head>

<body onload="message()">

</body>

</html>

JavaScripts in a page will be executed immediately while the page loads into the browser. This is

not always what we want. Sometimes we want to execute a script when a page loads, or at a later

event, such as when a user clicks a button. When this is the case we put the script inside a

function

Scripts in <head> and <body>

You can place an unlimited number of scripts in your document, and you can have scripts in both

the body and the head section at the same time.

Example

<html>

<head>

<script type="text/javascript">

function message()

{

alert("This alert box was called with the onload event");

}

</script>

</head>

<body onload="message()">

<script type="text/javascript">

document.write("This message is written by JavaScript");

</script>

</body>

</html>

Using an External JavaScript

JavaScript can also be placed in external files. External JavaScript files often contains code to be

used on several different web pages. External JavaScript files have the file extension .js.

External script cannot contain the <script></script> tags. To use an external script, point to the

.js file in the "src" attribute of the <script> tag:

Example

<html>

<head>

<script type="text/javascript" src="xxx.js"></script>

</head>

<body>

</body>

</html>

JavaScript Variables

JavaScript variables are used to hold values or expressions. A variable can have a short name,

like x, or a more descriptive name, like carname. Rules for JavaScript variable names:

 Variable names are case sensitive (y and Y are two different variables)

 Variable names must begin with a letter or the underscore character

Because JavaScript is case-sensitive, variable names are case-sensitive.

Declaring (Creating) JavaScript Variables

Creating variables in JavaScript is most often referred to as "declaring" variables. You can

declare JavaScript variables with the var keyword:

var x;

var carname;

After the declaration shown above, the variables are empty (they have no values yet). However,

you can also assign values to the variables when you declare them:

var x=5;

var carname="Volvo";

After the execution of the statements above, the variable x will hold the value 5, and carname

will hold the value Volvo.

Assigning Values to Undeclared JavaScript Variables

If you assign values to variables that have not yet been declared, the variables will automatically

be declared. These statements:

x=5;

carname="Volvo";

have the same effect as:

var x=5;

var carname="Volvo";

Redeclaring JavaScript Variables

If you redeclare a JavaScript variable, it will not lose its original value.

var x=5;

var x;

After the execution of the statements above, the variable x will still have the value of 5. The

value of x is not reset (or cleared) when you redeclare it.

The Lifetime of JavaScript Variables

If you declare a variable within a function, the variable can only be accessed within that function.

When you exit the function, the variable is destroyed. These variables are called local variables.

You can have local variables with the same name in different functions, because each is

recognized only by the function in which it is declared.

If you declare a variable outside a function, all the functions on your page can access it. The

lifetime of these variables starts when they are declared, and ends when the page is closed.

JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic between variables and/or values. Given that

y=5, the table below explains the arithmetic operators:

Operator Description Example Result

+ Addition x=y+2 x=7

- Subtraction x=y-2 x=3

* Multiplication x=y*2 x=10

/ Division x=y/2 x=2.5

% Modulus (division remainder) x=y%2 x=1

++ Increment x=++y x=6

-- Decrement x=--y x=4

JavaScript Assignment Operators

Assignment operators are used to assign values to JavaScript variables. Given that x=10 and y=5,

the table below explains the assignment operators:

Operator Example Same As Result

= x=y x=5

+= x+=y x=x+y x=15

-= x-=y x=x-y x=5

= x=y x=x*y x=50

/= x/=y x=x/y x=2

%= x%=y x=x%y x=0

Comparison Operators Comparison operators are used in logical statements to determine

equality or difference between variables or values. Given that x=5, the table below explains the

comparison operators:

Operator Description Example

== is equal to x==8 is false

=== is exactly equal to (value and type) x===5 is true

x==="5" is false

!= is not equal x!=8 is true

> is greater than x>8 is false

< is less than x<8 is true

>= is greater than or equal to x>=8 is false

<= is less than or equal to x<=8 is true

Logical Operators

Logical operators are used to determine the logic between variables or values. Given that x=6

and y=3, the table below explains the logical operators:

Operator Description Example

&& and (x < 10 && y > 1) is true

|| or (x==5 || y==5) is false

! not !(x==y) is true

Conditional Operator

JavaScript also contains a conditional operator that assigns a value to a variable based on some

condition.

Syntax

variablename=(condition)?value1:value2

Example

greeting=(visitor=="PRES")?"Dear President ":"Dear ";

Conditional Statements

Very often when you write code, you want to perform different actions for different decisions.

You can use conditional statements in your code to do this.

In JavaScript we have the following conditional statements:

 if statement - use this statement to execute some code only if a specified condition is true

 if...else statement - use this statement to execute some code if the condition is true and

another code if the condition is false

 if...else if....else statement - use this statement to select one of many blocks of code to be

executed

 switch statement - use this statement to select one of many blocks of code to be executed

If Statement

Use the if statement to execute some code only if a specified condition is true.

Syntax

if (condition)

 {

 code to be executed if condition is true

 }

Note that if is written in lowercase letters. Using uppercase letters (IF) will generate a JavaScript

error!

Example

<script type="text/javascript">

//Write a "Good morning" greeting if

//the time is less than 10

var d=new Date();

var time=d.getHours();

if (time<10)

 {

 document.write("Good morning");

 }

</script>

If...else Statement

Use the if....else statement to execute some code if a condition is true and another code if the

condition is not true.

Syntax

if (condition)

 {

 code to be executed if condition is true

 }

else

 {

 code to be executed if condition is not true

 }

Example

<script type="text/javascript">

//If the time is less than 10, you will get a "Good morning" greeting.

//Otherwise you will get a "Good day" greeting.

var d = new Date();

var time = d.getHours();

if (time < 10)

 {

 document.write("Good morning!");

 }

else

 {

 document.write("Good day!");

 }

</script>

If...else if...else Statement

Use the if....else if...else statement to select one of several blocks of code to be executed.

Syntax

if (condition1)

 {

 code to be executed if condition1 is true

 }

else if (condition2)

 {

 code to be executed if condition2 is true

 }

else

 {

 code to be executed if condition1 and condition2 are not true

 }

Example

script type="text/javascript">

var d = new Date()

var time = d.getHours()

if (time<10)

 {

 document.write("Good morning");

 }

else if (time>10 && time<16)

 {

 document.write("Good day");

 }

else

 {

 document.write("Hello World!");

 }

</script>

The JavaScript Switch Statement

Use the switch statement to select one of many blocks of code to be executed.

Syntax

switch(n)

{

case 1:

 execute code block 1

 break;

case 2:

 execute code block 2

 break;

default:

 code to be executed if n is different from case 1 and 2

}

JavaScript Popup Boxes

JavaScript has three kind of popup boxes: Alert box, Confirm box, and Prompt box.

Alert Box

An alert box is often used if you want to make sure information comes through to the user. When

an alert box pops up, the user will have to click "OK" to proceed.

Syntax

alert("sometext");

Example

<html>

<head>

<script type="text/javascript">

function show_alert()

{

alert("I am an alert box!");

}

</script>

</head>

<body>

<input type="button" onclick="show_alert()" value="Show alert box" />

</body>

</html>

Confirm Box

A confirm box is often used if you want the user to verify or accept something. When a confirm

box pops up, the user will have to click either "OK" or "Cancel" to proceed. If the user clicks

"OK", the box returns true. If the user clicks "Cancel", the box returns false.

Syntax

confirm("sometext");

Example

<html>

<head>

<script type="text/javascript">

function show_confirm()

{

var r=confirm("Press a button");

if (r==true)

 {

 alert("You pressed OK!");

 }

else

 {

 alert("You pressed Cancel!");

 }

}

</script>

</head>

<body>

<input type="button" onclick="show_confirm()" value="Show confirm box" />

</body>

</html>

Prompt Box

A prompt box is often used if you want the user to input a value before entering a page. When a

prompt box pops up, the user will have to click either "OK" or "Cancel" to proceed after entering

an input value. If the user clicks "OK" the box returns the input value. If the user clicks "Cancel"

the box returns null.

Syntax

prompt("sometext","defaultvalue");

Example

<html>

<head>

<script type="text/javascript">

function show_prompt()

{

var name=prompt("Please enter your name","Harry Potter");

if (name!=null && name!="")

 {

 document.write("Hello " + name + "! How are you today?");

 }

}

</script>

</head>

<body>

<input type="button" onclick="show_prompt()" value="Show prompt box" />

</body>

</html>

JavaScript Functions

A function will be executed by an event or by a call to the function.

JavaScript Functions

To keep the browser from executing a script when the page loads, you can put your script into a

function. A function contains code that will be executed by an event or by a call to the function.

You may call a function from anywhere within a page (or even from other pages if the function

is embedded in an external .js file). Functions can be defined both in the <head> and in the

<body> section of a document. However, to assure that a function is read/loaded by the browser

before it is called, it could be wise to put functions in the <head> section.

How to Define a Function

Syntax

function functionname(var1,var2,...,varX)

{

some code

}

The parameters var1, var2, etc. are variables or values passed into the function. The { and the }

defines the start and end of the function. The word function must be written in lowercase letters,

otherwise a JavaScript error occurs! Also note that you must call a function with the exact same

capitals as in the function name

JavaScript Function Example

Example

<html>

<head>

<script type="text/javascript">

function displaymessage()

{

alert("Hello World!");

}

</script>

</head>

<body>

<form>

<input type="button" value="Click me!" onclick="displaymessage()" />

</form>

</body>

</html>

The return Statement

The return statement is used to specify the value that is returned from the function. So, functions

that are going to return a value must use the return statement. The example below returns the

product of two numbers (a and b):

Example

<html>

<head>

<script type="text/javascript">

function product(a,b)

{

return a*b;

}

</script>

</head>

<body>

<script type="text/javascript">

document.write(product(4,3));

</script>

</body>

</html>

JavaScript Loops

Often when you write code, you want the same block of code to run over and over again in a

row. Instead of adding several almost equal lines in a script we can use loops to perform a task

like this.

In JavaScript, there are two different kind of loops:

 for - loops through a block of code a specified number of times

 while - loops through a block of code while a specified condition is true

The for Loop

The for loop is used when you know in advance how many times the script should run.

Syntax

for (variable=startvalue;variable<=endvalue;variable=variable+increment)

{

code to be executed

}

Example

The example below defines a loop that starts with i=0. The loop will continue to run as long as i

is less than, or equal to 5. i will increase by 1 each time the loop runs.

Note: The increment parameter could also be negative, and the <= could be any comparing

statement.

Example

<html>

<body>

<script type="text/javascript">

var i=0;

for (i=0;i<=5;i++)

{

document.write("The number is " + i);

document.write("
");

}

</script>

</body>

</html>

JavaScript While Loop

Loops execute a block of code a specified number of times, or while a specified condition is true.

The while Loop

The while loop loops through a block of code while a specified condition is true.

Syntax

while (variable<=endvalue)

 {

 code to be executed

 }

Note: The <= could be any comparing operator.

Example

The example below defines a loop that starts with i=0. The loop will continue to run as long as i

is less than, or equal to 5. i will increase by 1 each time the loop runs:

Example

<html>

<body>

<script type="text/javascript">

var i=0;

while (i<=5)

 {

 document.write("The number is " + i);

 document.write("
");

 i++;

 }

</script>

</body>

</html>

The do...while Loop

The do...while loop is a variant of the while loop. This loop will execute the block of code

ONCE, and then it will repeat the loop as long as the specified condition is true.

Syntax

do

 {

 code to be executed

 }

while (variable<=endvalue);

Example

The example below uses a do...while loop. The do...while loop will always be executed at least

once, even if the condition is false, because the statements are executed before the condition is

tested:

Example

<html>

<body>

<script type="text/javascript">

var i=0;

do

 {

 document.write("The number is " + i);

 document.write("
");

 i++;

 }

while (i<=5);

</script>

</body>

</html>

The break Statement

The break statement will break the loop and continue executing the code that follows after the

loop (if any).

Example

<html>

<body>

<script type="text/javascript">

var i=0;

for (i=0;i<=10;i++)

 {

 if (i==3)

 {

 break;

 }

 document.write("The number is " + i);

 document.write("
");

 }

</script>

</body>

</html>

The continue Statement

The continue statement will break the current loop and continue with the next value.

Example

<html>

<body>

<script type="text/javascript">

var i=0

for (i=0;i<=10;i++)

 {

 if (i==3)

 {

 continue;

 }

 document.write("The number is " + i);

 document.write("
");

 }

</script>

</body>

</html>

JavaScript For...In Statement

The for...in statement loops through the elements of an array or through the properties of an

object.

Syntax

for (variable in object)

 {

 code to be executed

 }

Note: The code in the body of the for...in loop is executed once for each element/property.

Note: The variable argument can be a named variable, an array element, or a property of an

object.

Example

Use the for...in statement to loop through an array:

Example

<html>

<body>

<script type="text/javascript">

var x;

var mycars = new Array();

mycars[0] = "Saab";

mycars[1] = "Volvo";

mycars[2] = "BMW";

for (x in mycars)

 {

 document.write(mycars[x] + "
");

 }

</script>

</body>

</html>

JavaScript Events

Events are actions that can be detected by JavaScript.

Events

By using JavaScript, we have the ability to create dynamic web pages. Events are actions that

can be detected by JavaScript. Every element on a web page has certain events which can trigger

a JavaScript. For example, we can use the onClick event of a button element to indicate that a

function will run when a user clicks on the button. We define the events in the HTML tags.

Examples of events:

 A mouse click

 A web page or an image loading

 Mousing over a hot spot on the web page

 Selecting an input field in an HTML form

 Submitting an HTML form

 A keystroke

Events are normally used in combination with functions, and the function will not be

executed before the event occurs.

Event Association

Events are associated with HTML tags. The definitions of the events described below are as

follows:

Event handler Applies to: Triggered when:

onAbort Image The loading of the image is cancelled.

onBlur Button, Checkbox, Password, Radio,

Reset, Select, Submit, Text,

TextArea, Window

The object in question loses focus

(e.g. by clicking outside it or pressing

the TAB key).

onChange Select, Text, TextArea The data in the form element is

changed by the user.

onClick Button, Checkbox, Link, Radio,

Reset, Submit

The object is clicked on.

onDblClick Document, Link The object is double-clicked on.

onError Image A JavaScript error occurs.

onFocus Button, Checkbox, Password, Radio,

Reset, Select, Submit, Text, TextArea

The object in question gains focus

(e.g. by clicking on it or pressing the

TAB key).

onKeyDown Image, Link, TextArea The user presses a key.

onKeyPress Image, Link, TextArea The user presses or holds down a key.

onKeyUp Image, Link, TextArea The user releases a key.

onLoad Image, Window The whole page has finished loading.

onMouseDown Button, Link The user presses a mouse button.

onMouseMove None The user moves the mouse.

onMouseOut Image, Link The user moves the mouse away from

the object.

onMouseOver Image, Link The user moves the mouse over the

object.

onMouseUp Button, Link The user releases a mouse button.

onMove Window The user moves the browser window

or frame.

onReset Form The user clicks the form's Reset

button.

onResize Window The user resizes the browser window

JavaScript Objects

Object oriented Programming in an important aspect of JavaScript. It is possible to use built-in

objects available in JavaScript. It is also possible for a JavaScript programmer to define his own

objects and variable types. In this JavaScript tutorial, you will learn how to make use of built-in

objects available in JavaScript.

Built-in objects in JavaScript:

Some of the built-in objects available in JavaScript are:

 Date

 Math

 String, Number, Boolean

 RegExp

 window (Global Obejct)

JavaScript String Object

Of the above objects, the most widely used one is the String object. Objects are nothing but

special kind of data. Each object has Properties and Methods associated with it. property is the

value that is tagged to the object. For example let us consider one of the properties associated

with the most popularly used String object - the length property. Length property of the string

object returns the length of the string that is in other words the number of characters present in

the string.

General syntax of using the length property of the string object is as below:

variablename.length

Here variablename is the name of the variable to which the string is assigned and length is the

keyword.

For example consider the JavaScript below:

or frame.

onSelect Text, Textarea The user selects text within the field.

onSubmit Form The user clicks the form's Submit

button.

onUnload Window The user leaves the page.

<html>

 <body>

 <script type="text/javascript">

 var exf="Welcome"

 document.write(exf.length)

 </script>

 </body>

</html>

The output of the above is

7

Method of an Object:

Method of an object refers to the actions than can be performed on the object. For example in

String Object there are several methods available in JavaScript.

Example to understand how method can be used in an Object.

In the example below, we have used toUpperCase method of String object.

<html>

 <body>

 <script type="text/javascript">

 var exf="Welcome"

 document.write(exf.toUpperCase())

 </script>

 </body>

</html>

The output of the above script is

WELCOME

In the above script since the method toUpperCase is applied to the string object exf which has

value initialized as Welcome all letters get converted as upper case and hence the output is as

above.

Purpose of String Object in JavaScript:

The main purpose of String Object in JavaScript is for storing text. General method of using

String Object is to declare a variable and assign a string, in other words a text to the variable.

var exf="Welcome"

assigns the text Welcome to the variable exf defined.

String Object Methods

Method Description

charAt() Returns the character at the specified index

charCodeAt() Returns the Unicode of the character at the specified index

concat() Joins two or more strings, and returns a copy of the joined strings

indexOf()
Returns the position of the first found occurrence of a specified value in a

string

lastIndexOf()
Returns the position of the last found occurrence of a specified value in a

string

match()
Searches for a match between a regular expression and a string, and returns

the matches

replace()
Searches for a match between a substring (or regular expression) and a string,

and replaces the matched substring with a new substring

search()
Searches for a match between a regular expression and a string, and returns

the position of the match

slice() Extracts a part of a string and returns a new string

split() Splits a string into an array of substrings

substr()
Extracts the characters from a string, beginning at a specified start position,

and through the specified number of character

substring() Extracts the characters from a string, between two specified indices

toLowerCase() Converts a string to lowercase letters

toUpperCase() Converts a string to uppercase letters

valueOf() Returns the primitive value of a String object

JavaScript Date Object

Usage of Date Object:

Date object of Java Script is used to work with date and times. General syntax for defining Date

object in Java Script is as follows:

var variablename=new Date()

In the above new is a keyword which creates an instance of object and Date() defines

variablename as Date Object.

For example:

var exf=new Date()

In the above example, variable exf is defined as Date object which has current date and time as

its initial value.

Methods of Date Object:

Some of the methods available with Date object are:

setSeconds()- Sets the seconds for a specified date according to local time.

setMinutes() - Sets the minutes for a specified date according to local time.

setHours() - Sets the hours for a specified date according to local time.

setDate() - Sets the day of the month for a specified date according to local time.

setMonth() - Sets the month for a specified date according to local time.

setYear() - Sets the year (deprecated) for a specified date according to local time.

setFullYear() - Sets the full year for a specified date according to local time.

toString() - Returns a string representing the specified Date object.

getSeconds() - Returns seconds in the specified date according to local time.

getMinutes() - Returns minutes in the specified date according to local time.

getHours() - Returns hour in the specified date according to local time.

getDay() - Returns day of the week for a specified date according to local time

getDate() - Returns day of the month for a specified date according to local time.

getMonth() - Returns month in the specified date according to local time.

getYear() - Returns year (deprecated) in the specified date according to local time.

getFullYear() - Returns year of the specified date according to local time.

Example for usage of Date Object methods mentioned above:

var exf=new Date()

exf.setFullYear(2020,0,20)

As we have seen setFullYear() is used for Setting the full year for a specified date according to

local time. In the above example the Date object exf is set to the specific date and year 20th

January 2020

Example for using methods of Date Object

 <html>

 <body>

 <script type="text/javascript">

 var exforsys=new Date();

 var currentDay=exforsys.getDate();

 var currentMonth=exforsys.getMonth() + 1;

 var currentYear=exforsys.getFullYear();

 document.write(currentMonth + "/" + currentDay +

 "/" + currentYear);

 </script>

 </body>

</html>

Output of the above program is:

11/15/2006

JavaScript Math Object

Usage of Math Object:

JavaScript Math object is used to perform mathematical tasks. But unlike the String and the Date

object which requires defining the object, Math object need not be defined. Math object in

JavaScript has two main attributes:

 Properties

 Methods

Properties of Math Object:

The JavaScript has eight mathematical values and this can be accessed by using the Math Object.

The eight mathematical values are:

 E

 PI

 square root of 2 denoted as SQRT2

 square root of 1/2 denoted as SQRT1_2

 natural log of 2 denoted as LN2

 natural log of 10 denoted as LN10

 base-2 log of E denoted as LOG2E

 base-10 log of E denoted as LOG10E

The way of accessing these values in JavaScript is by using the word Math before these values

namely as

 Math.E

 Math.LOG10E and so on

Methods of Math Object:

There are numerous methods available in JavaScript for Math Object. Some of them are

mentioned below namely:

 abs(x) - Returns absolute value of x.

 acos(x) - Returns arc cosine of x in radians.

 asin(x) - Returns arc sine of x in radians.

 atan(x) - Returns arc tan of x in radians.

 atan2(y, x) - Counterclockwise angle between x axis and point (x,y).

 ceil(x) - Returns the smallest integer greater than or equal to x. (round up).

 cos(x) - Returns cosine of x, where x is in radians.

 exp(x) - Returns ex

 floor(x) - Returns the largest integer less than or equal to x. (round down)

 log(x) - Returns the natural logarithm (base E) of x.

 max(a, b) - Returns the larger of a and b.

 min(a, b) - Returns the lesser of a and b.

 pow(x, y) - Returns xy

 random() - Returns a pseudorandom number between 0 and 1.

 round(x) - Rounds x up or down to the nearest integer. It rounds .5 up.

 sin(x) - Returns the Sin of x, where x is in radians.

 sqrt(x) - Returns the square root of x.

 tan(x) - Returns the Tan of x, where x is in radians.

Example for Math Object methods mentioned above:

<html>

 <body>

 <script type="text/javascript">

 document.write(Math.round(5.8))

 </script>

 </body>

</html>

The output of the above program is

6

This is because the round() method rounds the number given in argument namely here 5.8 to the

nearest integer. It rounds .5 up which gives 6.

Another example for using Math Object in JavaScript.

<html>

 <body>

 <script type="text/javascript">

 document.write(Math.max(8,9) + "
")

 document.write(Math.max(-5,3) + "
")

 document.write(Math.max(-2,-7) + "
")

 </script>

 </body>

</html>

Output of the above program is

9

3

-2

The above example uses the max() method of the Math object which returns the largest of the

two numbers given in arguments of the max method.

JavaScript Boolean Object

The Boolean object is used to convert a non-Boolean value to a Boolean value (true or false).

Boolean Object Methods

Method Description

toString() Converts a Boolean value to a string, and returns the result

valueOf() Returns the primitive value of a Boolean object

Number Object

The Number object is an object wrapper for primitive numeric values.

Number objects are created with new Number().

Syntax

var num = new Number(value);

Number Object Methods

Method Description

toExponential(x) Converts a number into an exponential notation

toFixed(x) Formats a number with x numbers of digits after the decimal point

toPrecision(x) Formats a number to x length

toString() Converts a Number object to a string

valueOf() Returns the primitive value of a Number object

String Object

The String object is used to manipulate a stored piece of text.

String objects are created with new String().

Syntax

var txt = new String(string);

or more simply:

var txt = string;

Window Object

The window object represents an open window in a browser.

If a document contain frames (<frame> or <iframe> tags), the browser creates one window

object for the HTML document, and one additional window object for each frame.

Window Object Methods

Method Description

alert() Displays an alert box with a message and an OK button

blur() Removes focus from the current window

clearInterval() Clears a timer set with setInterval()

clearTimeout() Clears a timer set with setTimeout()

close() Closes the current window

confirm() Displays a dialog box with a message and an OK and a Cancel button

createPopup() Creates a pop-up window

focus() Sets focus to the current window

moveBy() Moves a window relative to its current position

moveTo() Moves a window to the specified position

open() Opens a new browser window

print() Prints the content of the current window

prompt() Displays a dialog box that prompts the visitor for input

resizeBy() Resizes the window by the specified pixels

resizeTo() Resizes the window to the specified width and height

scroll()

scrollBy() Scrolls the content by the specified number of pixels

scrollTo() Scrolls the content to the specified coordinates

setInterval()
Calls a function or evaluates an expression at specified intervals (in

milliseconds)

setTimeout()
Calls a function or evaluates an expression after a specified number of

milliseconds

JavaScript RegExp Object

Regular expressions are used to do sophisticated pattern matching, which can often be helpful in

form validation. For example, a regular expression can be used to check whether an email

address entered into a form field is syntactically correct. JavaScript supports Perl-compatible

regular expressions.

There are two ways to create a regular expression in JavaScript:

 1. Using literal syntax

 var reExample = /pattern/;

 2. Using the RegExp() constructor

var reExample = new

RegExp("pattern");

Assuming you know the regular expression pattern you are going to use, there is no real

difference between the two; however, if you don't know the pattern ahead of time (e.g, you're

retrieving it from a form), it can be easier to use the RegExp() constructor.

JavaScript's Regular Expression Methods

The regular expression method in JavaScript has two main methods for testing strings: test() and

exec().

The exec() Method

The exec() method takes one argument, a string, and checks whether that string contains one or

more matches of the pattern specified by the regular expression. If one or more matches is found,

the method returns a result array with the starting points of the matches. If no match is found, the

method returns null.

The test() Method

The test() method also takes one argument, a string, and checks whether that string contains a

match of the pattern specified by the regular expression. It returns true if it does contain a match

and false if it does not. This method is very useful in form validation scripts. The code sample

below shows how it can be used for checking a social security number. Don't worry about the

syntax of the regular expression itself. We'll cover that shortly.

Code Sample: RegularExpressions for validating social security number

<html>

<head>

<script type="text/javascript">

var exp = /^[0-9]{3}[\-]?[0-9]{2}[\-]?[0-9]{4}$/;

function f1(ssn)

{

 if (exp.test(ssn)) { alert("VALID SSN"); }

 else { alert("INVALID SSN"); }

}

</script>

</head>

<body>

 <form name=”f1”>

 <input type="text" name="t1" />

 <input type="button" value="Check" onclick="f1(this.f1.t1.value);" />

 </form>

</body>

</html>

Code Explanation

 Let's examine the code more closely:

 1. First, a variable containing a regular expression object for a social security number is

declared.

 var exp = /^[0-9]{3}[\-]?[0-9]{2}[\-]?[0-9]{4}$/;

 2. Next, a function called f1() is created. This function takes one argument: ssn, which is a

string. The function then tests to see if the string matches the regular expression pattern by

passing it to the regular expression object's test() method. If it does match, the function alerts

"VALID SSN". Otherwise, it alerts "INVALID SSN".

 function f1(ssn)

 {

 if (exp.test(ssn)) { alert("VALID SSN"); }

 else { alert("INVALID SSN"); }

 }

 3. A form in the body of the page provides a text field for inserting a social security number

and a button that passes the user-entered social security number to the f1() function.

 <form >

 <input type="text" name="t1" />

 <input type="button" value="Check" onclick="checkSsn(this.form.ssn.value);" />

 </form>

Flags

Flags appearing after the end slash modify how a regular expression works.

 * The i flag makes a regular expression case insensitive. For example, /aeiou/i matches all

lowercase and uppercase vowels.

 * The g flag specifies a global match, meaning that all matches of the specified pattern should

be returned.

Regular Expression Syntax

A regular expression is a pattern that specifies a list of characters.

Start and End :^ $

A caret (^) at the beginning of a regular expression indicates that the string being searched must

start with this pattern.

 * The pattern ^foo can be found in "food", but not in "barfood".

A dollar sign ($) at the end of a regular expression indicates that the string being searched must

end with this pattern.

 * The pattern foo$ can be found in "curfoo", but not in "food".

Number of Occurrences : ? + * {}

The following symbols affect the number of occurrences of the preceding character: ?, +, *, and

{}.

A questionmark (?) indicates that the preceding character should appear zero or one times in the

pattern.

 * The pattern foo? can be found in "food" and "fod", but not "faod".

A plus sign (+) indicates that the preceding character should appear one or more times in the

pattern.

 * The pattern fo+ can be found in "fod", "food" and "foood", but not "fd".

A asterisk (*) indicates that the preceding character should appear zero or more times in the

pattern.

 * The pattern fo*d can be found in "fd", "fod" and "food".

Curly brackets with one parameter ({n}) indicate that the preceding character should appear

exactly n times in the pattern.

 * The pattern fo{3}d can be found in "foood" , but not "food" or "fooood".

Curly brackets with two parameters ({n1,n2}) indicate that the preceding character should

appear between n1 and n2 times in the pattern.

 * The pattern fo{2,4}d can be found in "food","foood" and "fooood", but not "fod" or

"foooood".

Curly brackets with one parameter and an empty second paramenter ({n,}) indicate that the

preceding character should appear at least n times in the pattern.

 * The pattern fo{2,}d can be found in "food" and "foooood", but not "fod".

Common Characters: . \d \D \w \W \s \S

A period (.) represents any character except a newline.

 * The pattern fo.d can be found in "food", "foad", "fo9d", and "fo*d".

Backslash-d (\d) represents any digit. It is the equivalent of [0-9].

 * The pattern fo\dd can be found in "fo1d", "fo4d" and "fo0d", but not in "food" or "fodd".

Backslash-D (\D) represents any character except a digit. It is the equivalent of [^0-9].

 * The pattern fo\Dd can be found in "food" and "foad", but not in "fo4d".

Backslash-w (\w) represents any word character (letters, digits, and the underscore (_)).

 * The pattern fo\wd can be found in "food", "fo_d" and "fo4d", but not in "fo*d".

Backslash-W (\W) represents any character except a word character.

 * The pattern fo\Wd can be found in "fo*d", "fo@d" and "fo.d", but not in "food".

Backslash-s (\s) represents any whitespace character (e.g, space, tab, newline, etc.).

 * The pattern fo\sd can be found in "fo d", but not in "food".

Backslash-S (\S) represents any character except a whitespace character.

 * The pattern fo\Sd can be found in "fo*d", "food" and "fo4d", but not in "fo d".

Grouping: []

Square brackets ([]) are used to group options.

 * The pattern f[aeiou]d can be found in "fad" and "fed", but not in "food", "faed" or "fd".

 * The pattern f[aeiou]{2}d can be found in "faed" and "feod", but not in "fod", "fed" or "fd".

Negation : ^

When used after the first character of the regular expression, the caret (^) is used for negation.

 * The pattern f[^aeiou]d can be found in "fqd" and "f4d", but not in "fad" or "fed".

Subpatterns: ()

Parentheses () are used to capture subpatterns.

 * The pattern f(oo)?d can be found in "food" and "fd", but not in "fod".

Alternatives: |

The pipe (|) is used to create optional patterns.

 * The pattern foo$|^bar can be found in "foo" and "bar", but not "foobar".

Escape Character : \

The backslash (\) is used to escape special characters.

 * The pattern fo\.d can be found in "fo.d", but not in "food" or "fo4d".

A more practical example has to do matching the delimiter in social security numbers. Examine

the following regular expression.

^\d{3}([\-]?)\d{2}([\-]?)\d{4}$

Within the caret (^) and dollar sign ($), which are used to specify the beginning and end of the

pattern, there are three sequences of digits, optionally separated by a hyphen or a space. This

pattern will be matched in all of following strings (and more).

 * 123-45-6789

 * 123 45 6789

 * 123456789

 * 123-45 6789

 * 123 45-6789

 * 123-456789

The last three strings are not ideal, but they do match the pattern. Back references can be used to

make sure that the second delimiter matches the first delimiter. The regular expression would

look like this.

^\d{3}([\-]?)\d{2}\1\d{4}$

The \1 refers back to the first subpattern. Only the first three strings listed above match this

regular expression.

Form Validation with Regular Expressions

Regular expressions make it easy to create powerful form validation functions. Take a look at the

following example.

Code Sample: Login.html

<html>

<head>

<script type="text/javascript">

var RE_EMAIL = /^(\w+[\-\.])*\w+@(\w+\.)+[A-Za-z]+$/;

var RE_PASSWORD = /^[A-Za-z\d]{6,8}$/;

function validate()

{

 var email = form.Email.value;

 var password = form.Password.value;

 var errors = [];

 if (!RE_EMAIL.test(email)) { alert("You must enter a valid email address."); }

 if (!RE_PASSWORD.test(password)) { alert("You must enter a valid password."); }

 }

</script>

</head>

<body>

 <form name=”form”>

 Email: <input type="text" name="Email" />

 Password: <input type="password" name="Password” />

 *Password must be between 6 and 10 characters and can only contain letters and digits.

 <input type="submit" value="Submit" onclick=”Validate();”/>

 <input type="reset" value="Reset Form" />

 </p>

</form>

</body>

</html>

Code Explanation

 This code starts by defining regular expressions for an email address and a password. Let's

break each one down.

 var RE_EMAIL = /^(\w+\.)*\w+@(\w+\.)+[A-Za-z]+$/;

 1. The caret (^) says to start at the beginning. This prevents the user from entering invalid

characters at the beginning of the email address.

 2. (\w+[\-\.])* allows for a sequence of word characters followed by a dot or a dash. The *

indicates that the pattern can be repeated zero or more times. Successful patterns include

"ndunn.", "ndunn-", "nat.s.", and "nat-s-".

 3. \w+ allows for one or more word characters.

 4. @ allows for a single @ symbol.

 5. (\w+\.)+ allows for a sequence of word characters followed by a dot. The + indicates that

the pattern can be repeated one or more times. This is the domain name without the last portion

(e.g, without the "com" or "gov").

 6. [A-Za-z]+ allows for one or more letters. This is the "com" or "gov" portion of the email

address.

 7. The dollar sign ($) says to end here. This prevents the user from entering invalid

characters at the end of the email address.

 var RE_PASSWORD = /^[A-Za-z\d]{6,8}$/;

 1. The caret (^) says to start at the beginning. This prevents the user from entering invalid

characters at the beginning of the password.

 2. [A-Za-z\d]{6,8} allows for a six- to eight-character sequence of letters and digits.

 3. The dollar sign ($) says to end here. This prevents the user from entering invalid

characters at the end of the password.

Exercises:

1. Construct a reg exp to validate a text field which should be used to accept only a string

composed by 3 letters, one space, 6 numbers, a "-" and a number such as MJHJ 123456-6

Ans: /^[A-Za-z]{4}\s\d{6}\-\d{1}$/

2. Write regular expressions to check for:

 1. Proper Name

 o starts with capital letter

 o followed by one or more letters or apostophes

 o may be multiple words (e.g, "New York City")

 2. Initial

 o zero or one capital letters

 3. State

 o two capital letters

 4. Postal Code

 o five digits (e.g, "02138")

 o possibly followed by a dash and four digits (e.g, "-1234")

 5. Username

 o between 6 and 15 letters or digits

3. Add validation to check the following fields:

 1. first name

 2. middle initial

 3. last name

 4. city

 5. state

 6. zip

 7. username

 3. Test your solution in a browser.

Document Object

Each HTML document loaded into a browser window becomes a Document object. The

Document object provides access to all HTML elements in a page, from within a script.

Document Object Methods

Method Description

close()
Closes the output stream previously opened with

document.open()

getElementById() Accesses the first element with the specified id

getElementsByName() Accesses all elements with a specified name

getElementsByTagName() Accesses all elements with a specified tagname

open()
Opens an output stream to collect the output from

document.write() or document.writeln()

write() Writes HTML expressions or JavaScript code to a document

writeln()
Same as write(), but adds a newline character after each

statement

Arrays

It describes the JavaScript array object including parameters, properties, and methods.

Parameters

 * arrayLength

 * elementN - Array element list of values

Properties

 * index

 * input

 * length - The quantity of elements in the object.

 * prototype - For creating more properties.

Methods

 * chop() - Used to truncate the last character of a all strings that are part of an array. This

method is not defined so it must be written and included in your code.

 var exclamations = new Array("Look out!", "Duck!")

 exclamations.chop()

 Causes the values of exclamations to become:

 Look out

 Duck

 * concat()

 * grep(searchstring) - Takes an array and returns those array element strings that contain

matching strings. This method is not defined so it must be written and included in your code.

 words = new Array("limit","lines","finish","complete","In","Out")

 inwords = words.grep("in")

 The array, inwords, will be:

 lines, finish

 * join(delimiter) - Puts all elements in the array into a string, separating each element with the

specified delimiter.

 words = new Array("limit","lines","finish","complete","In","Out")

 var jwords = words.join(";")

 The value of the string jwords is:

 limit;lines;finish;complete;In;Out

 * pop() - Pops the last string off the array and returns it. This method is not defined so it must

be written and included in your code.

 words = new Array("limit","lines","finish","complete","In","Out")

 var lastword = words.pop()

 The value of the string lastword is:

 Out

 * push(strings) - Strings are placed at the end of the array. This method is not defined so it

must be written and included in your code.

 words = new Array("limit","lines","finish")

 words.push("complete","In","Out")

 The array, words, will be:

 limit, lines, finish, complete, In, Out

 * reverse() - Puts array elements in reverse order.

 words = new Array("limit","lines","finish","complete","In","Out")

 words.reverse()

 The array, words, will be:

 Out, In, complete, finish, lines, limit

 * shift() - Decreases array element size by one by shifting the first element off the array and

returning it. This method is not defined so it must be written and included in your code.

 words = new Array("limit","lines","finish","complete","In","Out")

 word = words.shift()

 The array, words, will be:

 In, complete, finish, lines, limit

 The string word will be:

 Out

 * sort() - Sorts the array elements in dictionary order or using a compare function passed to the

method.

 words = new Array("limit","lines","finish","complete","In","Out")

 word = words.sort()

 The value of words becomes:

 In,Out,complete,finish,limit,lines

 * splice() - It is used to take elements out of an array and replace them with those specified. In

the below example the element starting at element 3 is removed, two of them are removed and

replaced with the specified strings. The value returned are those values that are replaced. This

method is not defined so it must be written and included in your code.

 words = new Array("limit","lines","finish","complete","In","Out")

 words1 = words.splice(3, 2, "done", "On")

 The value of words becomes:

 limit, lines, finish, done, On, Out

 The value of words1 is set to:

 complete, In

 * split(deliimiter) - Splits a string using the delimiter and returns an array.

 words = new String("limit;lines;finish;complete;In;Out")

 var swords = words.split(";")

 The values in the array swords is:

 limit, lines, finish, complete, In, Out

 * unshift() - Places elementa at the start of an array

 words = new Array("finish","complete","In","Out")

 word = words.shift("limit","lines")

 The array, words, will be:

 limit, lines,finish, complete, In, Out

Form validation

Form validation is the process of checking that a form has been filled in correctly before it is

processed. For example, if your form has a box for the user to type their email address, you

might want your form handler to check that they've filled in their address before you deal with

the rest of the form. Form validation is usually done with JavaScript embedded in the Web page

Validate text field to accept e-mail id

The above program will accept the input in any one of the following valid form

 raj@yahoo.com raj.kumar@yahoo.com raj.k@yahoo.co.in

validate text field to accept name

The above program will accept the input only in the following valid form

Rajkumar

Validate text field to accept an age

The above program will accept the input only in any one of the following valid form

25 5 101

Validate a checkbox

Validate form selection

Host Objects

JavaScript supports three types of objects: native, host, and user-defined. Native objects

are objects supplied by the JavaScript language. String, Boolean, Math, and Number are

examples of native objects.

Host objects are JavaScript objects that provide special access to the host environment.

They are provided by the browser for the purpose of interaction with the loaded

document. In a browser environment,

1. window

2. document

objects are host objects. Several other browser host objects are informal, de facto

standards. They are: alert, prompt, confirm.

DOM

• The Document Object Model (DOM) is an API that allows programs to interact

with HTML (or XML) documents

• The primary function of the Document Object Model is to view, access, and

change the structure of an HTML document separate from the content contained

within it.

• The DOM will provide you with methods and properties to retrieve, modify,

update, and delete parts of the document you are working on. The properties of

the Document Object Model are used to describe the web page or document and

the methods of the Document Object Model are used for working with parts of the

web page.

• In DOM, HTML document is represented in tree like structure. It constructs a

hierarchical tree structure for a HTML document to traverse and to manipulate the

document.

• For example,

<html>

 <head>

 <title>Sample Document</title>

 </head>

 <body>

 <h1>An HTML Document</h1>

 <p>This is a <i>simple</i> document.

 </body>

</html>

The DOM representation of this document is as follows:

The node directly above a node is the parent of that node. The nodes one level directly

below another node are the children of that node. Nodes at the same level, and with the

same parent, are siblings. The set of nodes any number of levels below another node are

the descendants of that node.

Types of nodes

• There are many types of nodes in the DOM document tree that specifies what

kind of node it is. Every Object in the DOM document tree has properties and

methods defined by the Node host object.

The following table lists the non method properties of Node object.

The following table lists the node types commonly encountered in HTML documents and

the nodeType value for each one.

Node Type nodeType constant nodeType value

Element Node.ELEMENT_NODE 1

Text Node.TEXT_NODE 3

Document Node.DOCUMENT_NODE 9

Comment Node.COMMENT_NODE 8

DocumentFragment Node.DOCUMENT_FRAGMENT_NODE 11

Attr Node.ATTRIBUTE_NODE 2

The following table lists the method properties of Node object.

Traversing a Document: Counting the number of Tags

The DOM represents an HTML document as a tree of Node objects. With any tree

structure, one of the most common things to do is traverse the tree, examining each node

of the tree in turn. The following program shows one way to do this.

<html>

<head>

<script>

function countTags(n)

{ // n is a Node

 var numtags = 0; // Initialize the tag counter

 if (n.nodeType == 1) // Check if n is an Element

 numtags++; // Increment the counter if so

 var children = n.childNodes; // Now get all children of n

 for(var i=0; i < children.length; i++)

 { // Loop through the children

 numtags += countTags(children[i]); // Recurse on each one

 }

 return numtags; // Return the total number of tags

}

</script>

</head>

<body onload="alert('This document has ' + countTags(document) + ' tags')">

This is a <i>sample</i> document.

</body>

</html>

Output

Finding Specific Elements in a Document

The ability to traverse all nodes in a document tree gives us the power to find specific

nodes. When programming with the DOM API, it is quite common to need a particular

node within the document or a list of nodes of a specific type within the document.

You can use getElementById() and getElementsByTagName() methods of Document

Object to obtain a list of any type of HTML element. For example, to find all the tables

within a document, you'd do this:

var tables = document.getElementsByTagName("table");

This code finds <table> tags and returns elements in the order in which they appear in the

document.

getElementById() to find a specific element whereas getElementsByName() returns an

array of elements rather than a single element.

The following program illustrates this.

<html>

 <head>

 <script type="text/javascript">

 function f1()

 {

 alert(document.getElementById("p1").nodeName);

 }

 </script>

 </head>

 <body>

 <p id="p1"> Program is coded to find paragraph element is present in the document

or not using

 its id attribute</p>

 <input type="button" value="Find" onclick="f1();" />

 </body>

</html>

Output

In the above program the method getElementById() finds the specific element and

nodeName is used property return the specific element name.

Modifying a Document: Reversing the nodes of a document

DOM API lies in the features that allow you to use JavaScript to dynamically modify

documents. The following examples demonstrate the basic techniques of modifying

documents and illustrate some of the possibilities.

The following example includes a JavaScript function named reverse(), a sample

document, and an HTML button that, when pressed, calls the reverse() function, passing

it the node that represents the <body> element of the document. The reverse() function

loops backward through the children of the supplied node and uses the removeChild()

and appendChild() methods of the Node object to reverse the order of those children.

<html>

 <head><title>Reverse</title>

 <script>

 function reverse(n) { // Reverse the order of the children of Node n

 var kids = n.childNodes; // Get the list of children

 var numkids = kids.length; // Figure out how many children there are

 for(var i = numkids-1; i >= 0; i--) { // Loop backward through the children

 var c = n.removeChild(kids[i]); // Remove a child

 n.appendChild(c); // Put it back at its new position

 }

 }

 </script>

 </head>

 <body>

 <pre>

 paragraph #1

 paragraph #2

 paragraph #3

 </pre>

 <form>

 <input type="button" value="Click Me to reverse"

onclick="reverse(document.body);"/>

 </form>

 </body>

</html>

when the user clicks the button, the order of the paragraphs and of the button are

reversed.

Changing element Style

The following program illustrates how to change the element style using DOM properties

and methods.

<html>

 <head>

 <script type="text/javascript">

 function f1()

 {

 document.getElementById("p1").style.backgroundColor="red";

 }

 </script>

 </head>

 <body>

 <p id="p1"> Program is coded to change the style of the paragraph</p>

 <input type="button" value="Change" onclick="f1();" />

 </body>

</html>

The method getElementById() gets the paragraph element in the document and the

property style is used to change the background color of the paragraph to “red” as shown

below.

Changing element style

<html>

<head>

<script type="text/javascript">

function f1()

{

 var o=document.getElementById("p1");

 o.style.color="red";

}

function f2()

{

 var o=document.getElementById("p1");

 o.style.color="blue";

}

</script>

</head>

<body>

<p id="p1">

 Click Me

</p>

<form>

<input type=button id="b1" value="RED" onclick=f1() />

<input type=button id="b2" value="BLUE" onclick=f2() />

</form>

</body>

</html>

Output

Changing HTML Content

This page shows a example of how to change a HTML page's content

<html>

<head>

<script type="text/javascript">

function f1()

{

 document.getElementById("p1").childNodes[0].nodeValue="Fine, thank you.";

}

function f2()

{

 document.getElementById("p1").childNodes[0].nodeValue="How are you?";

}

</script>

</head>

<body id="p1">

<pre>

<input type="button" id="b1" value="Question" onclick=f1() />

<input type="button" id="b2" value="Answer" onclick=f2() />

</pre>

</body>

</html>

After pressing the Question button, it adds the content, How are you?” to the HTML

document and after pressing the Answer button, it replaces the content “How are you?”

with “Fine, thank you”

Removing Element from HTML documents

<html>

<head>

<script type="text/javascript">

function f1()

{

 var node=document.getElementById("p1");

 node.removeChild(node.childNodes[0]);

}

</script>

</head>

<body >

<pre id="p1"><input type="button" id="b1" value="Question" />

<input type="button" id="b2" value="Remove" onclick=f1() />

Example for Removing an element from HTML document.

</pre>

</body>

</html>

After pressing the “Remove” button, the element “Question” is removed from the

document.

Server-side Programming: Servlet

The combination of

 HTML

 JavaScript

 DOM

is sometimes referred to as Dynamic HTML (DHTML). Web pages that include scripting

are often called dynamic pages. Similarly, web server response can be static or dynamic

 Static: HTML document is retrieved from the file system by the server

and the same returned to the client.

 Dynamic: In server, a HTML document is generated by a program in

response to an HTTP request

Java servlets are one technology for producing dynamic server responses. Servlet is a

class instantiated by the server to produce a dynamic response.

Servlet Overview

The following figure illustrates the servlet program working principle.

1. When server starts it instantiates servlets

2. Server receives HTTP request, determines need for dynamic response

3. Server selects the appropriate servlet to generate the response, creates

request/response objects, and passes them to a method on the servlet instance

4. Servlet adds information to response object via method calls

5. Server generates HTTP response based on information stored in response object

Types of Servlet

 Generic Servlet

 HttpServlet

Servlets vs. Java Applications

 Servlets do not have a main() method

 Entry point to servlet code is via call to a method doGet() /doPost()

 Servlet interaction with end user is indirect via request/response object APIs

 Primary servlet output is typically HTML

Running Servlets

1. Compile servlet (make sure that JWSDP libraries are on path)

2. Copy .class file to shared/classes directory

3. (Re)start the Tomcat web server

4. If the class is named ServletHello, browse to

http://localhost:8080/servlet/ServletHello

What are Servlets?

Java Servlets are programs that run on a Web or Application server and act as a middle

layer between a request coming from a Web browser or other HTTP client and databases

or applications on the HTTP server.

Using Servlets, you can collect input from users through web page forms, present records

from a database or another source, and create web pages dynamically.

Java Servlets often serve the same purpose as programs implemented using the Common

Gateway Interface (CGI). But Servlets offer several advantages in comparison with the

CGI.

 Performance is significantly better.

 Servlets execute within the address space of a Web server. It is not necessary to

create a separate process to handle each client request.

 Servlets are platform-independent because they are written in Java.

 Java security manager on the server enforces a set of restrictions to protect the

resources on a server machine. So servlets are trusted.

 The full functionality of the Java class libraries is available to a servlet. It can

communicate with applets, databases, or other software via the sockets and RMI

mechanisms that you have seen already.

Servlets Architecture:

Following diagram shows the position of Servelts in a Web Application.

Servlets Tasks:

Servlets perform the following major tasks:

1. Read the explicit data sent by the clients (browsers). This includes an HTML form

on a Web page or it could also come from an applet or a custom HTTP client

program.

2. Read the implicit HTTP request data sent by the clients (browsers). This includes

cookies, media types and compression schemes the browser understands, and so

forth.

3. Process the data and generate the results. This process may require talking to a

database, executing an RMI or CORBA call, invoking a Web service, or

computing the response directly.

4. Send the explicit data (i.e., the document) to the clients (browsers). This

document can be sent in a variety of formats, including text (HTML or XML),

binary (GIF images), Excel, etc.

5. Send the implicit HTTP response to the clients (browsers). This includes telling

the browsers or other clients what type of document is being returned (e.g.,

HTML), setting cookies and caching parameters, and other such tasks.

Servlets Packages:

Java Servlets are Java classes run by a web server that has an interpreter that supports the

Java Servlet specification.

Servlets can be created using the javax.servlet and javax.servlet.http packages, which

are a standard part of the Java's enterprise edition, an expanded version of the Java class

library that supports large-scale development projects.

These classes implement the Java Servlet and JSP specifications. At the time of writing

this tutorial, the versions are Java Servlet 2.5 and JSP 2.1.

Java servlets have been created and compiled just like any other Java class. After you

install the servlet packages and add them to your computer's Classpath, you can compile

servlets with the JDK's Java compiler or any other current compiler.

Servlets - Life Cycle

A servlet life cycle can be defined as the entire process from its creation till the

destruction. The following are the paths followed by a servlet

 The servlet is initialized by calling the init () method.

 The servlet calls service() method to process a client's request.

 The servlet is terminated by calling the destroy() method.

 Finally, servlet is garbage collected by the garbage collector of the JVM.

Now let us discuss the life cycle methods in details.

The init() method :

The init method is designed to be called only once. It is called when the servlet is first

created, and not called again for each user request. So, it is used for one-time

initializations, just as with the init method of applets.

The servlet is normally created when a user first invokes a URL corresponding to the

servlet, but you can also specify that the servlet be loaded when the server is first started.

When a user invokes a servlet, a single instance of each servlet gets created, with each

user request resulting in a new thread that is handed off to doGet or doPost as

appropriate. The init() method simply creates or loads some data that will be used

throughout the life of the servlet.

The init method definition looks like this:

public void init() throws ServletException {

 // Initialization code...

}

The service() method :

The service() method is the main method to perform the actual task. The servlet container

(i.e. web server) calls the service() method to handle requests coming from the client(

browsers) and to write the formatted response back to the client.

Each time the server receives a request for a servlet, the server spawns a new thread and

calls service. The service() method checks the HTTP request type (GET, POST, PUT,

DELETE, etc.) and calls doGet, doPost, doPut, doDelete, etc. methods as appropriate.

Here is the signature of this method:

public void service(ServletRequest request,

 ServletResponse response)

 throws ServletException, IOException{

}

The service () method is called by the container and service method invokes doGe,

doPost, doPut, doDelete, etc. methods as appropriate. So you have nothing to do with

service() method but you override either doGet() or doPost() depending on what type of

request you receive from the client.

The doGet() and doPost() are most frequently used methods with in each service request.

Here are the signature of these two methods.

The doGet() Method

A GET request results from a normal request for a URL or from an HTML form that has

no METHOD specified and it should be handled by doGet() method.

public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 // Servlet code

}

The doPost() Method

A POST request results from an HTML form that specifically lists POST as the

METHOD and it should be handled by doPost() method.

public void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 // Servlet code

}

The destroy() method :

The destroy() method is called only once at the end of the life cycle of a servlet. This

method gives your servlet a chance to close database connections, halt background

threads, write cookie lists or hit counts to disk, and perform other such cleanup activities.

After the destroy() method is called, the servlet object is marked for garbage collection.

The destroy method definition looks like this:

 public void destroy() {

 // Finalization code...

 }

Architecture Diagram:

The following figure depicts a typical servlet life-cycle scenario.

 First the HTTP requests coming to the server are delegated to the servlet

container.

 The servlet container loads the servlet before invoking the service() method.

 Then the servlet container handles multiple requests by spawning multiple

threads, each thread executing the service() method of a single instance of the

servlet.

Structure of a servlet program

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class NewServlet extends HttpServlet

{

public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException

{

 response.setContentType("text/html"); // content type of the response

 PrintWriter out = response.getWriter(); // used to create a response as a Html

doc

 try {

 out.println("<html>");

 out.println("</html>");

 }catch(Exception e){}

 }

 }

}

Servlets - Examples

Servlets are Java classes which service HTTP requests and implement the

javax.servlet.Servlet interface. Web application developers typically write servlets that

extend javax.servlet.http.HttpServlet, an abstract class that implements the Servlet

interface and is specially designed to handle HTTP requests.

Sample Code for Hello World:

Following is the sample source code structure of a servlet example to write Hello World:

// Import required java libraries

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

// Extend HttpServlet class

public class HelloWorld extends HttpServlet {

 private String message;

 public void init() throws ServletException

 {

 // Do required initialization

 message = "Hello World";

 }

 public void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException

 {

 // Set response content type

 response.setContentType("text/html");

 // Actual logic goes here.

 PrintWriter out = response.getWriter();

 out.println("<html><body>" + message +

“</body></html>");

 out.close();

 }

 public void destroy() { }

}

Output:

finally type http://localhost:8080/HelloWorld in browser's address

box. If everything goes fine, you would get following result:

Parameter data and Query Strings

Servlet has methods to access data contained in HTTP Request (URL) sent to the server

from the browser. The Query String portion of the HTTP request is so called parameter

data. For example,

http://www.example.com/servlet/PrintThis?name=Raj&color=Red

where the portion after the ? is called a query string. Here it is “name=Raj&color=Red”,

in which name and color are parameter names and “Raj” and “Red” are parameter values.

Printthis is a servlet filename and servelt is a directory. Multiple parameters are separated

by &. All parameter values are strings by default. Parameter names and values can be any

8-bit characters.

The following methods are used to process these parameter data in sevlets.

The following program explains how to process these parameter names and values as

well as path of the resource using servlet.

Example program

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class NewServlet extends HttpServlet

{

public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException

{

 response.setContentType("text/html”);

 PrintWriter out = response.getWriter();

 try {

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet NewServlet</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("Servlet file NewServlet is at: " + request.getContextPath());

 Enumeration para1=request.getParameterNames();

 while(para1.hasMoreElements())

 {

 out.println("Parameter name:"+para1.nextElement());

 }

 String name = request.getParameter("name");

 String id = request.getParameter("id");

 out.println("Name:" + name);

 out.println("Id:" + id);

 out.println("</body>");

 out.println("</html>");

 }catch(Exception e){}

 }

 }

}

The method getContextPath() of HttpServeltRequest object is used to get the location of

the resource

The method getParameter() is used to get the value of the parameter. The method

getParameterNames() is used to return the paranameter names as well. It returns

enumeration. The following code in the above program is used to retrieve the parameter

names from the enumeration.

 Enumeration para1=request.getParameterNames();

 while(para1.hasMoreElements())

 {

 out.println("Parameter name:"+para1.nextElement());

 }

Output:

Forms and Parameter data:(Passing values from HTML document to Servlet)

A form automatically generates a query string when submitted. The parameter name

specified by value of name attributes of form controls. For example,

where username is the parameter name.

Parameter value can be the value of value attribute of any form control or it may be the

value received from the user by the control at run time. For example,

The following program explains how to send the data to server from a web page and the

same how to receive it from the server.

Html for creating a web page

<html>

 <head>

 </head>

 <body>

 <pre>

 <form action="NewServlet" method="post">

 First Name: <input type="text" name="t1" />

 Last Name: <input type="text" name="t2" />

 Age: <input type="text" name="t3" />

 E-mail: <input type="text" name="t4" />

 <input type="submit" value="Submit" />

 <form>

 </pre>

 </body>

</html>

Servlet for processing the data coming from this web page

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class NewServlet extends HttpServlet {

 public void goPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 try {

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet NewServlet</title>");

 out.println("</head>");

 out.println("<body>");

 String s1 = request.getParameter("t1");

 String s2 = request.getParameter("t2");

 String s3 = request.getParameter("t3");

 String s4 = request.getParameter("t4");

 out.println("First Name:" + s1);

 out.println("Last Name:" + s2);

 out.println("Age:" + s3);

 out.println("E-mail:" + s4);

 out.println("</body>");

 out.println("</html>");

 } catch(Exception e) {}

 }

}

Output

GET vs. POST method for forms:

GET:

 It is used to process the query string which is part of URL

 If the length of query string is limited it may be used.

 It is recommended when parameter data is not stored but used only to request

information.

POST:

 It is used to process the query string as well as to store the data on server.

 If the Query string is sent as body of HTTP request, the post method will be used

to retrieve.

 If the length of query string is unlimited, it can be used

 It is recommended if parameter data is intended to cause the server to update

stored data

 Most browsers will warn you if they are about to resubmit POST data to avoid

duplicate updates

 Important note:

For the HTTP Session, Cookies, URL rewriting use our

class notes. The soft copy for these topics will be given

later.

	WEB TECHNOLOGIES - STUDY MATERIAL (UNIT –II)
	M.Sc COMPUTER SCIENCE (2021-2022)
	AUTHOR:
	Dr.M.GOMATHY
	Asst. Professor
	Department of Computer Science
	Shrimati Indira Gandhi College
	Trichirappalli-02
	UNIT –II –JAVA SCRIPT
	Client Side Programming : JavaScript
	What can a JavaScript do?
	The Real Name is ECMAScript. JavaScript is an implementation of the ECMAScript language standard.ECMAScript is developed and maintained by the ECMA organization. ECMA-262 is the official JavaScript standard. The language was invented by Brendan Eich a...
	Scripts in <head>
	Scripts in <head> and <body>
	Using an External JavaScript
	JavaScript Variables
	Declaring (Creating) JavaScript Variables
	Assigning Values to Undeclared JavaScript Variables
	Redeclaring JavaScript Variables
	The Lifetime of JavaScript Variables
	JavaScript Arithmetic Operators
	JavaScript Assignment Operators
	Comparison Operators Comparison operators are used in logical statements to determine equality or difference between variables or values. Given that x=5, the table below explains the comparison operators:
	Logical Operators
	Conditional Operator
	Syntax
	Example

	Conditional Statements
	If Statement
	Syntax

	If...else Statement
	Syntax

	If...else if...else Statement
	Syntax

	The JavaScript Switch Statement
	Syntax

	JavaScript Popup Boxes
	Alert Box
	Syntax

	Confirm Box
	Syntax

	Prompt Box
	Syntax

	JavaScript Functions
	JavaScript Functions
	How to Define a Function
	Syntax

	JavaScript Function Example
	The return Statement
	JavaScript Loops
	The for Loop
	Syntax
	Example

	The while Loop
	Syntax
	Example

	The do...while Loop
	Syntax
	Example

	The break Statement
	The continue Statement
	JavaScript For...In Statement
	Syntax
	Example

	JavaScript Events
	Events
	Events are normally used in combination with functions, and the function will not be executed before the event occurs.
	Event Association
	JavaScript Objects
	Method of an Object:
	Purpose of String Object in JavaScript:

	String Object Methods
	JavaScript Date Object
	Methods of Date Object:
	JavaScript Math Object
	Usage of Math Object:
	Properties of Math Object:
	Methods of Math Object:

	JavaScript Boolean Object
	Boolean Object Methods
	Number Object
	Syntax
	Number Object Methods
	String Object
	Syntax (1)
	Window Object
	Window Object Methods
	Document Object
	Document Object Methods
	Types of nodes
	Traversing a Document: Counting the number of Tags
	The DOM represents an HTML document as a tree of Node objects. With any tree structure, one of the most common things to do is traverse the tree, examining each node of the tree in turn. The following program shows one way to do this.
	Finding Specific Elements in a Document

	What are Servlets?
	Servlets Architecture:
	Servlets Tasks:
	Servlets Packages:
	Servlets - Life Cycle
	The init() method :
	The service() method :
	The doGet() Method
	The doPost() Method

	The destroy() method :
	Architecture Diagram:
	Servlets - Examples
	Sample Code for Hello World:

